# **Active and Passive Electronic Components**

mbsmpro.com/active-and-passive-electronic-components

December 31, 2025 www.mbsmpro.com



Active and Passive Electronic Components

Mbsmpro.com, Electronics, Active Components, Passive Components, Transistor, Diode, LED, Resistor, LDR, Thermistor, Capacitor, Inductor, Switch, Battery, Variable Resistor, Transformer, Symbols

## Understanding Active and Passive Electronic Components

Electronic circuits are built from two main families of components: **active components** that can amplify or control signals, and **passive components** that only store, dissipate, or filter energy. Recognizing which parts are active or passive is essential for troubleshooting PCBs, designing power supplies, and analyzing why a control board fails in HVAC or refrigeration equipment.

### What makes a component active or passive?

Active components require an external power source and can introduce energy into the circuit, typically by amplifying, switching, or processing signals.

Passive components do not generate power; instead, they resist, store, or transfer energy, which makes them simpler and generally more reliable over long operating hours.

#### Key criteria

| Criterion         | Active components                                 | Passive components                                                |
|-------------------|---------------------------------------------------|-------------------------------------------------------------------|
| Power requirement | Need external bias or supply to operate correctly | Operate without dedicated supply; work from the circuit itself    |
| Signal behavior   | Can amplify, modulate, or switch signals          | Cannot amplify; only attenuate, store, or filter                  |
| Typical role      | Processing, logic, regulation, high-level control | Biasing, timing, filtering, matching, energy storage              |
| Examples          | Transistors, diodes, ICs, LEDs                    | Resistors, capacitors, inductors, transformers, LDRs, thermistors |

## List of active components and their roles

Active devices are the "intelligent" part of a board: they decide when current flows, how much gain is applied, and how digital data is processed.

In low-voltage control boards for compressors or fan motors, these parts are usually the first suspects when there is no response or unstable regulation.

#### **Common active components**

| Active component                      | Function in a circuit                                                                                                                             | Typical HVAC / industrial example                             |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Transistor (BJT, MOSFET)              | Amplifies or switches current; acts as electronic valve                                                                                           | Driving a relay coil,<br>controlling DC fan<br>speed          |
| Diode                                 | Allows current in one direction only; used for rectification and protection                                                                       | Bridge rectifier in SMPS, free-wheel diode on solenoid        |
| LED (light emitting diode)            | Indicates status by emitting light when forward-biased                                                                                            | Power, alarm, or compressor-run indicators                    |
| Photodiode                            | Converts light into current; used in sensors and receivers                                                                                        | Infrared receiver in remote control boards                    |
| Integrated circuit (IC)               | Combines many<br>transistors/diodes into one<br>package for logic, control, or<br>power conversion                                                | Microcontroller,<br>driver IC, or op-amp<br>in control module |
| Seven-segment display (LED)           | Numeric indicator built from multiple LEDs driven by an IC                                                                                        | Temperature or error-code display on controllers              |
| Rechargeable/non-rechargeable battery | Provides DC supply for memory backup or standalone devices; considered active in many classifications because it delivers energy into the circuit | RTC backup battery or wireless sensor power source            |

Compared with simple mechanical switches, active devices react faster, allow precise analog control, and integrate protection features such as soft-start or current limiting.

# List of passive components and their behavior

Passive components shape voltage and current waveforms, store energy, and protect sensitive active devices from surges and noise.

Without properly sized passive parts, even the best microcontroller will fail due to ripple, spikes, or thermal stress.

#### **Core passive components**

| Passive component                 | Main function                                                               | Typical use case                                       |
|-----------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|
| Resistor                          | Limits current, divides voltage, sets bias points                           | LED current limiting; feedback networks in SMPS        |
| LDR (light-dependent resistor)    | Changes resistance with light level; part of sensor circuits                | Automatic lighting or ambient-light sensing            |
| Thermistor (NTC / PTC)            | Resistance varies with temperature; used for sensing and inrush limiting    | Temperature probes on coils or defrost sensors         |
| Capacitor                         | Stores charge, filters noise, stabilizes supply rails                       | DC bus smoothing, EMI filtering, start/run capacitors  |
| Inductor                          | Stores energy in magnetic field; filters current or forms resonant circuits | Output choke in DC-DC converter, EMI filter            |
| Switch (mechanical)               | Opens or closes circuit path manually or by actuator                        | On/off pushbuttons, limit switches                     |
| Variable resistor / potentiometer | Adjustable resistance for calibration or user settings                      | Set-point knob on thermostat or speed control          |
| Transformer                       | Transfers energy between windings; adapts voltage and provides isolation    | Mains step-down<br>transformer, control<br>transformer |

Passive parts rarely fail catastrophically; instead, their values drift with heat, age, or overload, which can slowly push a regulation loop out of tolerance.

# Active vs passive: practical comparisons

A good way to understand the difference is to compare how active and passive components behave in typical low-voltage control circuits.

This is especially relevant when diagnosing PCB faults in refrigeration controllers or inverter drives.

#### **Energy and control capabilities**

| Aspect               | Active component example                                            | Passive component example                                                                      |
|----------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Signal amplification | Transistor boosting sensor signal before ADC                        | No amplification; resistor network only scales sensor voltage                                  |
| Switching function   | MOSFET turning compressor relay on/off using low-power logic signal | Toggle switch manually interrupts line but cannot be gated electronically                      |
| Power gain           | Audio or gate driver IC increases output power vs. input            | Transformer changes voltage and current but does not create power gain                         |
| Dependence on supply | Stops functioning without bias or Vcc                               | Still presents resistance, capacitance, or inductance characteristics without dedicated supply |

In digital control boards, active devices act as the *brain*, while passive parts form the *skeleton* and *blood vessels* that route and condition energy so the brain can work reliably.

## Component symbols and schematic reading

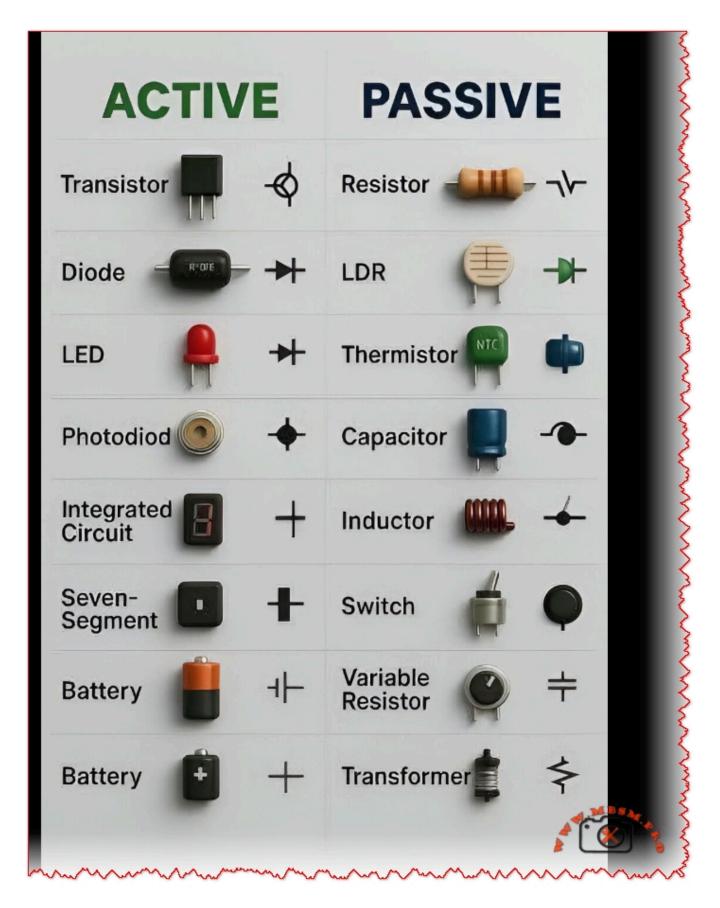
Every component is represented by a standardized symbol on schematics, which allows engineers and technicians to understand complex boards quickly.

Learning these symbols is critical for decoding service manuals, drawing custom circuits, or reverse-engineering a defective PCB.

### Representative symbols

| Component                    | Typical symbol characteristics                                                                                  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Transistor                   | Three-terminal symbol (emitter, base, collector or source, gate, drain) with arrow indicating current direction |
| Diode / LED /<br>photodiode  | Triangle-to-bar symbol; LED adds outward arrows; photodiode adds inward arrows                                  |
| Resistor / variable resistor | Zig-zag or rectangular symbol; arrow or extra terminal for variable types                                       |
| Capacitor                    | Two parallel lines (or one curved for polarized electrolytic)                                                   |
| Inductor                     | Series of loops or rectangles; transformer shows two inductors with coupling bars or core symbol                |
| LDR / thermistor             | Resistor symbol with diagonal arrows or small temperature mark to indicate dependency                           |

Knowing the symbol set reduces troubleshooting time because it becomes easy to identify where signals are amplified, rectified, filtered, or limited on any board.


## Why both active and passive parts are essential in modern electronics

Real-world products, from inverter air conditioners to smart thermostats, rely on the interplay between active controllers and passive networks.

Active components process information and drive loads, while passive components ensure clean power, stable references, and EMC compliance.

In a typical microcontroller-based board:

- The microcontroller, transistors, and driver ICs handle logic, timing, and switching.
- **Resistors, capacitors, and inductors** form power filters, RC timing networks, and snubbers to protect the active silicon.
- Sensors such as thermistors and LDRs translate physical variables into electrical signals that the active devices can interpret.



Tags: active components, capacitor, diode, electronic symbols, electronics basics, hvac control board, inductor, integrated circuit, ldr, led, mbsm, mbsm.pro, mbsmgroup, mbsmpro.com, passive components, pcb troubleshooting, resistor, sensor components, seven segment display, thermistor, transformer, transistor, variable resistor

# Leave a Reply

Edit your profile. Log out? Required fields are marked \*

Comment \*

## **Related Posts**